) ot »
3 W
) i) {

1}

/ Argor Pl~eman Transport Properties

H
H
| 12964
_ NHE-12€
(A SSYON NUMBER) - =
(THRU)

N
o
w
b3
o
: P
: v /
3 (PAGES)
3 ' (C2DE)
Waie 4 25
'y
(ﬁASA CR OR TMX OR AD NUNMBER) {
CATEGORY)

R. Stephen deVoto.

—
GpO PRICE s
SRICE(S) s __— February 196

CFST‘ e e,

copy RS —"T

Harc v¥r S
e i‘N"F\i /

v,\\ﬁy‘\croﬂC\

/’"_""”
_,//

o gy B0
w BB3 SUY

Report No. SU AA217"

Prepared under
National Aeronautics and Space Administration

T Grant NsG 299-63

Submitted by D. Bershader

~

* This report was alse issued as SUDAER No. 217 of the
Department of Aeronautics and Astronautics

INSTITUTE FOR PLASMA RESEARCH
STANFORD UNIVERSITY, STANFORD, CALIFORNIA

T /3598~




!
/
ARGON PLASMA TRANSPORT PROPERTIES //

by t

R. Stephen deVoto

February 1965

Reproduction in whole or in part
is permitted for any purpose of
the United States Government.

Report No., SU AA217*%

“Prepared under. . ]
National Aeronautics and Space Administration Grant NsG 299-63

Submitted by D, Bershader

*
This report was also issued as SUDAER No. 217 of the

Department of Aeronautics and Astronautics

Institute for Plasma Research
Stanford University Stanford, California



ABSTRACT é(/
121%

The transport properties of equilibrium argon plasma have been com-
puted for pressures of 1. 10. 1M, 760 and 19900 mm Hg and temperatures
from 5709 to 2000O°K. In addition to the usual viscosity and thermal
conductivity, the thermal and multicomponent diffusion coefficients have
also been computed. Two problems not occuring in computations of prop-
erties of un-ionized gases are exsmined. The first concerns the rate of
convergence of the approximations to the transport coefficients. It is
found that at least the third approximation to the thermal conductivity
must be used down to very low degrees of ionization to ensure the accuracy
of the results. Very slow convergence is glso observed for the electron-
atom, atom-electron and electron-ion diffusion coefficients at very low
degrees of ionization. The source of this behavior is apparently the
Remsauer minimum in the electron-argon atom cross sections. The second
problem occurs in the charged particle cross sections. In the present
report the shielded Coulomb votentisl is used to bypass the divergence
occuring in this cross section when the unshielded potential is used.
Inclusion of terms of order unity in these cross sections increases the
transport coefficients by appreciable smounts. Computations of electri-

cal conductivity are also compared with some measured values here.
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1. Intreduction

Computation of transport properties of ionized gases have in the
past been carried out with either of two types of expressions: (1) the
first or second approximation in the Chapman-Enskog method (Hirschfelder,
Curtiss and Bird, 1964), (2) mixture rules, derived either as approxi-
mations to (1) (Brokaw, 1964) or with mean-free-path arguments (Fay, 1962;
Lin et al, 1955). However, neither the theoretical expressions of (1) nor
the usual mixture rules give correct values for the thermal conductivity in
the 1imit of full ionization. This difficulty is bypassed with the mean-
free-path relations by defining the electron~ion cross section in such a
way that the properties take on the values derived by Spitzer and Hiarm
(1953) when ionization is complete. However, this forced agreement in no
way guarantees that the expressions will be accurate for other than very
small and very high ionization. It is desirable to obtain theoretical
expressions which automatically give the correct limiting values of the
coefficients. This has been accomplished in an earlier report (de Voto,
1964; hereafter denoted by 0n.*

It is worthwhile to briefly summarize some important results of I.
The theoretical expressions for thermal conductivity, thermal diffusion
coefficient and multicomponent diffusion coefficient were extended to the
fourth approximation and the viscosity to the second approximation. The
formulation of Hirschfelder et al (1964) for these coefficients was gen-
erally followed. The expressions were then used in a study of the rate of
convergence of the approximations to the transport coefficients for the
fully ionized plasma (and also for several other simple binary mixtures).
It was seen that at least the third approximation to the thermal conduc-
tivity ard thermal diffusion coefficient must be used to obtain accurate
coefficients for the plasma. The second approximations to the viscosity
and electrical conductivity were adequate.

In this report the theoretical expressions are applied to the compu-
tation of properties of argon plasma. Argon was chosen for the calculations

both because it is commonly used in plasma devices, and because a large

¥
The equation numbers of expressions taken from that report will be given
with superscript I, e.g. (2.3)1.



amount of information on the cross sections is available. This report

has two aims in addition to a presentation of transport properties for
use in analyzing flow situations. The first goal, which is evident from
the remarks already made, is to investigate the rate of convergence of

the approximations to the coefficients. The second includes a comparison
of the transport coefficients as computed with and without the next higher
order terms in the charged-particle cross sections. 1In the usual computa-
tions, all terms other than the dominant log terms are neglected. In I,
an approximate method due to Liboff (1959), which uses the shielded
potential for small angle deflections, was used to derive explicit
expressions for the next higher order terms in these cross sections.

These expressions enable one to compute properties more accurately than
the cross sections derived with the usual Debye cutoff procedure.

The report has been divided into five sections: (1) the present
introduction, (2) the computation of the cross sections, (3) the descrip-
tion of the results of the transport property calculations, (4) comparison
of computed electrical conductivities with measurements, and (5) a final
secticn in which the results are discussed. The expressions used for the
computations will not be repeated here. Their general form is similar to
those given in Chap. 7 of Hirschfelder et al (1964); complete details may

be fcund in I.*

An errata sheet for this report is appended.




2.1 Cross Sections for Argon

In partially ionized argon average cross sections must be determined

for:

(1) charged particles: e-e, e—A+, A—A+,

(2) atom-atom: A-A,

(3) electron-atom: e—-A, and

(4) atom-ion: A-A'.

=(£,s)

Expressions for the average cross section Q for case (1) have
been derived in I using the shielded Coulomb potential for small angle

scattering (Liboff, 1959). They are

s=1
=(4,s) _an(s-1)! 2 1 1
Q = D P InA -8 -2y + Z (n) (3.12)
n=1

with (o,B) = (4, 1/2) for £ =1; (12,1) for £ = 2; (12, 7/6) for

£ = 3; and (16, 4/3) for £ = 4. y is Euler's constant (0.5772...),
bO is the average distance of closest approach (ZiZJeZ/ZkT), and the
plasma parameter A is defined differently depending on the relative

size of the Debye length

a2 = ——13',1—‘— (2.3)I
Sﬂedn
E
. . -1/3 .
and the interelectron distance, h = nE . Generally, d > h, but if

d < h, as it is in equilibrium argon above about 400 mm Hg pressure,
then A = 2h/bo will be used. A has been defined in such a way that
neglect of the constant terms in (3.12)I is equivalent to a cutoff of
the Q(E) cross-section integrals at d (or h) and taking the average
value of (l/2)ug2 (= 2kT); see Chapman and Cowling, 1958, p. 179) in

the argument of the logarithm.

For case (2), Amdur and Mason (1958) recommended that the potential



of interaction be taken as the repulsive exponential
- -r (2.1
g =8 exp( /p) 2.1)

For argon they give ﬂo = 3.23 X 104 eV and p = 0.2248. For this

potential Monchick (1959) has already determined the average cross

6(2,5).

sections He presents the results of his calculations as a

table of I({,s) vs «, where

2 2
6(2’5) _ T[Oz Q(z’s)* _ 167(f +1) a'p 1(4,s) (2.2)

(s +1)1[24-1 -1
and

a

In (ﬂo/kT)

Unfortunately, Monchick only computed I(f,s) for [ < 3, so the
computations here will be restricted to the third and lower approxi-
mation for most properties. In the actual computations it is necessary
to interpolate between the values of the Table of Monchick. This was
accomplished with Lagrange 3-point interpolation. Some of the cross
sections so calculated are shown in Fig. 1.

For the electron-atom encounters it is preferable not to seek a
classical potential as in the atom-atom case. The reason is that a
non-classical phenomenon, namely the Ramsauer effect, occurs for this
interaction, and it would probably be difficult to reproduce this
effect with a simple classical potential. In argon the cross sections
show a relative minimum at energies around .4 eV, and a maximum at
several electron volts higher. This effect has been extensively
studied, both with measurements of the total cross section given by

b8

QTOT(g,XO) = 2n\/ﬂ o(x,g) sin x dx (2.3)
X

o

and of the differential cross section G(X,g). The lower limit Xo
is placed on the total cross section since the experiments always
fail to detect scattering below a certain angle Xo' Unfortunately,

almost all of the cross-section measurements are virtually useless

4
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for determining the gas-kinetic cross sections (2,18)¥ The total

Q(E)

cross sections cannot be used to determine without a priori
knowledge of the angular distribution of scattering. Additionally,
most measurements fail to report the lower limit Xo on scattering
angles detected.

In theory, the measurements of the differential cross section
would furnish sufficient information to determine the Q(z). Most
experimenters have evidently been unable to measure absolute values
of d(X,g) and so report only relative values. A notable exception
is given in the paper by Ramsauer and Kollath (1932). They report

measurements of ¢ at 11 angles for electron scattering from argon

at several relative energies from .6 to 12.5 eV. To determine the

)

cross sections Q , their measured differential cross sections ©

were fitted to a polynomial in X, and this polynomial was used to
£)

compute the Q( " integrand for use with Simpson's rule. It was

possible to obtain a very good fit to the values obtained by Ramsauer
and Kollath with a Stanford University program using orthogonal
polynomials. The total cross sections (XO = 0) were calculated

Q(E)

simultaneously with the and compared with those measured by
Ramsauer and Kollath (Xo unknown). Agreement was very good. The
results for the gas-kinetic cross sections so calculated are shown
in Figs. 2-5,.

At energies below 0.6 eV, measurements of o(x,g) are not
generally available, With the aid of effective range theory, O'Malley

TOT
(1963) has recently analyzed some experimental measurements of Q ,

1
Q( ) and ¢ 1in the low-energy range to obtain formulas for the quan-
tum-mechanical phase shifts nz. The gas-kinetic cross sections are

given in terms of these phase shifts by (see Appendix) '

(1) 45 . 2
Q = ;5 zgj (4+1) sin (ng - qz+1) (2.4a)
=0
(2)  4n L+1)(f+2) . 2 _
Q = Rz ~(2+3)  Sin (nz q£+2) (2. 4p)
=0




(3) _ 4r (£+3) (f42) (J41) | 2
C = E{ GHeY el S (Mg~ Mg *
,2;0 v

2 2
(+2) (f+1)
+ (1) [(2%5)(2%3) T e T

2
Y . 2
* (217,+1)(212-1)] sin” (M, - T‘m’} (2.%¢)

4rn (£+4) (U+3) (L+2) (U+1) . 2 _
-2 Z{ (20+7) (20+5) (20+3) S0 (g = Mgy ) *
2=0 -

Q(4)

(4+2) (f+1) W3)? L (e2)? .
(20+3) (20+7) (24+5) (24+5) (24+3)

2 2
(J+1) )/ ) |
Y @i 2D T (2£+1)(2z-1)] sin” (m, - n“z)} (2.4d)

In these equations,; k is related to the relative energy E by

E = 13.6a§ nz with a the Bohr radius. Cross sections calculated
from the phase shifts determined by O'Malley are given in Figs. 2-5.
Also shown are cross sections determined from calculations of the
first two phase shifts no and ”1 at four energies by Kivel (1959)
(only these phase shifts are important ai very low cnergies). We
note that the cross sections of Kivel and O'Malley agree fairly well
at the low energies. However, the curves determined from O'Malley's
phase shifts diverge considerably at higher energies from the points
calculated with the data of Ramsauer and Kollath. This behavior
suggests that the effective range formulas used by O'Malley are
‘applicable only at very low energies.

| The last results to be used here have been obtained by Westin
(1946). With the aid of a type of analog computer he obtained phase
shifts from a large variety of experimental measurements, including
his own. Cross sections computed from his phase shifts are given in
Table I. From these results and the others mentioned above, '"best

)

fit" curves for Q °~°, J = 1-4, were chosen. They are shown also
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TABLE I, THE ELECTRON-ARGON ATOM TOTAL CROSS SECTIONS
TOT 2
P, &3

Q , FOR f§ = 1-4 VS ENERGY
FROM PHASE SHIFTS OF WESTIN (1946)
Energy QTOT Q(1) Q(2) Q(3) Q(4)
(eV) (22)
0.54 0.36 0.45 0.24 0.41 0.29
18 .09 5.42 3.90 5.26 4,49
4.9 8.00 7.85 5.76 7.76 6.64
8.7 12.14 8.81 5.86 9.31 7.32
13.6 15.3 7.2 4.9 8.7 7.0
19.6 15.8 4.4 4.3 6.7 6.5
26.7 14.3 3.3 3.9 5.5 5.85
30.6 13.1 3.1 3.6 5.0 5.3
34.8 11.7 2.8 3.2 4.4 4.7
44.1 9.7 2.3 2.6 3.5 3.8
54.4 8.2 2.0 2.2 2.9 3.1
85.0 5.8 1.6 1.5 2.1 2.1
122.4 4.6 1.4 1.1 1.8 i 1.6

in Figs. 2-5. The cross sections from Westin's investigations were
preferred to those of Ramsauer-Kollath above 5 eV because of his
more extensive investigations at the higher energies.

Numerical integration with the aid of Simpson's rule was used to

E(E’S)

evaluate the average cross sections (2.17):.[ In this case
the upper limit on the integrals was taken as 70 = 110 eV/kKT. The
total range from 0O to 70 was divided into several smaller ranges,
with the interval size in Simpson's rule determined by the rate of
change of Q(ﬂ) with energy. Doubling the interval size changed
the values of the integrals by less than 1%. Some of the average
cross sections so computed are given in Table II and in Figs. 1 and
6. The Ramsauer minimum is clearly shown in Fig. 6, but occurs at
different temperatures for different values of s because of the

2s+3 —=({,s)

weighting factor exp(72) Xy in the integrand of Q

12




TABLE II. AVERAGE CROSS SECTIONS @ 2'S) (82) For

ELECTRON-ARGON ATOM ENCOUNTERS

T(K) {(1,1) | (1,2) |(1,3) |(1,4) | (1,5) |(1,6) | (1,7) | (2,2) {(3,3) | (4,4)
100 4,29 3.55 2,98 2.53 2.15 1.83 1.57 4.09 3.25 3.11
200 2.74 2.01 1.50 1.12 0.84 0.63 0.48 2,51 1,73 1.59
300 1.90 1.25 0.83 0.57 0.40 0.30 0.24 1.67 1.03 0.91
400 1.38 0.83 0.52 0.35 0.27 0.25 0.26 1.17 0.67 0.58
500 1.04 0.59 0.38 0.29 0.28 0.31 0.36 0.86 0.49 0.43
600 0.82 0.47 0.33 0.30 0.34 0.40 0.48 0.66 0.41 0.37
700 0.68 0.40 0.33 0.35 0.42 0.51 0.61 0.54 0.38 0.37
800 0.58 0.38 0.36 0.42 0.51 0.62 0.74 0.47 0.39 0.41
900 0.52 0.38 0.40 0.49 0.61 0.74 0.86 0.44 0.42 0.47

. 1000 0.48 0.40 0.46 0.57 0.71 0.84 0.98 0.43 0.46 0.54

2000 0.63 0.85 1.12 1.40 1.69 1.98 2.26 0.91 1.13 1.59

3000 1.01 1.41 1.83 2.24 2.65 3.04 3.44 1.66 1.92 2.73

4000 1.41 1.96 2,51 3.04 3.57 4.10 4.62 2.42 2.69 3.76

5000 1.82 2.50 3.17 3.83 4,48 5.12 5.73 3.13 3.43 4.68

6000 2.23 3.03 3.82 4.59 5.33 6.02 6.63 3.80 4,13 5.49

7000 2.63 3.55 4.45 5.30 6.07 6.74 7.29 4.41 4.78 6.18

8000 3.02 4.05 5.03 5.91 6.67 7.28 7.74 4.97 5.36 6.75

9000 3.40 4,52 5.55 6.43 7.14 7.67 8.02 5.47 5.88 7.20

10000 3.77 4.96 6.01 6.86 7.49 7.92 8.16 5.91 6.34 7.57
For the ion-atom cross sections two types of processes must be
considered. The first is the usual elastic collision and the second

is that resulting from charge transfer between the atom and the ion.

The latter process leads to a much higher cross section at lower

energies, but Mason, Vanderslice and Yos (1959) have proved from

scattering angle arguments that charge exchange does not affect the

)

values of Q for J even. For [ odd they show that a good

approximation is

the ion,
range and attractive.

from the mutual repulsion of the atomic fields.

_ 2QTOT

2)
Q lzodd‘ TR

(2.5

Two types of elastic interaction take place between the atom and

The other force is short range and results

The first is due to the poiarization force and is of long

The latter dominates

at the average energies of interest in this work, and will be the only

force considered.

13

Apparently the only determination of the short-range
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force has been made by Cramer (1959) in ion scattering experiments.
Cloney, Mason and Vanderslice (1962) have fitted his results with the
exponential potential (5.1) and the constants ﬂo = 5.38 X 106 eV

and p = 1/5.08 X, Some calculations of the average cross sections
made with this potential are given in Fig. 1.

Three types of information have been used to help determine the
charge-transfer cross section: (1) ion beam scattering experiments,
(2) ion mobility measurements, and (3) theory. Some results from the
first source have been plotted in Fig. 7. All except one of the
neasurements lie above the energy range 0.5-2.0 eV that is most
important for the present calculations. The ion mobility measurements
bave been made at temperatures of 100, 200 and 300° K. At the higher
temperature, polarization forces are unimportant and the total cross
section measured can be taken as due only to charge transfer. Dalgarno
(1958) has examined a number of such measurements with the aid of
theoretical formulas and adjusted certain constants to give a best fit
to available data. From Fig. 7 we see that his final curve lies con-
siderably above all scattering measurements except those of Gilbody
and Hasted (1957). Apparently Dalgarno also considered these latter
results in his analysis. Also shown are calculations from a theoretical
formula due to Firsov (1951). The latter reproduce quite well the
scattering results, but calculations not reproduced here show that they
give average cross sections considerably below those determined from
mobility measurements,

Dalgarno (1958) has also derived a relation based on theory which

gives the general dependence of @Q on relative speed,

TR

TOT 1 2

Qp =3 (A-B fng (2.6)
Two constants A and B are available in (5.6) and can be chosen to
reproduce exactly the measured cross sections at two energies. Choos-

ing to fit the measurements of Ziegler (1953) at 1 eV and those of
Cramer (1959) at 50 eV, we obtain the constants

A = 25.61, B = 1.196 (2.7)
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2
ggT in R .
rule, and using the relation

for Q Computing the average cross sections with Simpson's

by =32 ——“—)1/2 e (2.9
I~ 8n m kT 6(1,1)
IA

we get an ion mobility of 1.62 cmz/V—sec at 300°K and n = 2.69 X 1019/cc.
This compares very favorably with the measured value of 1.6 (Biondi and
Chanin, 1957). In view of this agreement, and of the good agreement of
this QTOT with the beam measurements, it was decided to use the

TR
expressions (2.6), (2.7) and (2.5) with numerical integration to deter-

=~(f4,s)

mine the average cross section Q for f odd. Some results of

the calculations are shown in Fig. 8,

5.2 Equilibrium Transport Properties.

The calculations in this section will be restricted to singly
ionized argon in thermodynamic equilibrium., The Saha equation has
been used to determine the species composition. Defining the degree

of ionization O by

o = nE/(nE + n,) (2.9)

the equation takes the form

h3p i exp(6/T) -1/2 "
a =11+ —~—————§7§ 6_ T—fff§7§ (2.10)
2(2nmE) I (kT)

where 6 is the ionization potential of the atom in oK. The internal

partition functions Q for the ions and atoms are given by the sum

N
; €n
- - "
Q = N exp( kT) (?.11)

where g, is the degeneracy of the nth state whose energy is En
above the ground state of the atom or ion. The sum extends over all

possible electronic states up to and including those with principal

17
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*
quantum number N. Following Drellishak, Knopp and Cambel (1963) ,
N is determined by setting the Debye length d equal to the classical
Bohr radius of the Nth orbital,

7 1/2 1/4
N = | -etf . L (2.12)
a 2
o 8ne ng
with Zeff the effective charge of the atomic or ionic core. Allow-

ance is made for depression of the ionization potential by the amount

L

N2

AD = (2.13)
Since the electron number density occurs in the criterion for the
cutoff of the partition function sums (2.11), it is necessary to use
an iterative process to determine the composition. The values of N
for the atom and ion were first guessed and the composition was calcu-
lated with (2.10), (2.12), and (2.13). The new values of N were used
repeatedly as guesses until agreement was attained between initial and
computed values. The number densities so calculated agree closely
with those of Drellishak et al, and will not be given here.

The general computer program mentioned earlier was used for the
property calculations. The calculations of most properties were per-
formed for temperatures from 5000—200000K and for pressures of 1, 10,
100, 760 and 1900 mm Hg. The upper limit on temperature represents
approximately the point where the second ion becomes important; below
the lower limit all properties except diffusion coefficients can be
computed neglecting the ionization (Amdur and Mason, 1958). At the
two higher pressures (1 and 2-1/2 atm), it was found that the Debye
length was shorter than the interelectron distance. At these pressures
the charged-particle cross sections were computed with a cutoff at the
interelectron distance and the higher order terms neglected. At the
lower pressures the complete expressions as listed in Eq.(S.lE)Iwere

used.

*
These authors kindly furnished copies of their program decks from

which the energy levels used in the present work were taken.
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The viscosity is plotted in Fig. 9. Where not otherwise indicated,
the curves are for the second approximation. As might be expected from
the results of I (Tables 3 & 11), the difference between the first and
secord appreximations to this coefficient is important only at higher
degrees of ionization, The large decrease in viscosity is due, of
course, to the very large charged-particle cross section which deter-
mines the ion contribution., In Fig. 9 are also shown results of the
second approximaticen at 100 mm in which the higher order terms in the
charged-particle cross section are neglected. It appears that the
inclusion of these higher order terms has a greater effect on the
viscosity than does the increase in level of approximation.

The electrical conductivity, as ccmputed from the electron-ion

diffusion coefficient DE with the aid of (2,26a)2 is shown in

I
Figs. 10-12., In the first figure we see that the first approximation
is poorest at high degrees of ionization, but becomes better around
8000°K for 1 atm pressure. Since the electrical conductivity is pro-
portional to the number density of the electrons, it decreases rapidly
below this temperature and will not be shown., It may be calculated
quite readily down to 25000K from the electron-ion diffusion coeffi-
cients to be presented later. It will turn out that at least the third
and preferably the fourth approximation to DEI and hence to ¢ must
be used for equilibrium argon below about S000°K. In the curves of
Fig. 12, we see that the higher order terms in the charged-particle
cross secticn also have considerable effect on the electrical
conductivity.

In Fig. 13, where the thermal conductivity for argeon at 1 atm is
plotted, we see one of the most pronounced effects of the use of higher
approximations, The third approximation rises above the first and
second at less than 0.5% ionization. The difference increases until
at o = 0.58 (T= 15000°K) and higher, the third approximation is more
than two times the lower approximaticons. It is apparent that any
approximate formula for the thermal conductivity of a partially ionized

gas which is based solely on the second approximation will be seriously

in error. We also see in Figs. 13 and 15 that the expression of

20
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Spitzer and Hirm (1953) gives results very close to the third
approximation as computed without higher order terms in the charged
cross sections. At lower degrees of ionization the formula of Spitzer
and H8rm underestimates the thermal conductivity by about 20% for a
pressure of 1 atm. In this region the electron-atom collisions, for
which the average cross section is quite small, become more important
and hence allow freer conduction by the electrons. This effect shows
up more prominently as inflection points in the thermal conductivity
curves at 1 and 10 mm pressure (Fig. 14).

The results in Figs. 9, 13-14 have been combined to yield values
for the Prandtl number shown in Fig. 16. For singly ionized argon,

this quantity is given by
Pr = (5/2)(1 + &) (kn/Am,) (2.14)

The large increase in A and decrease in 7 with increasing ioniza-
tion causes Pr to fall to very low values.

Figure 17 shows values of third approximations to the diffusion
coefficients. For the electrons, this coefficient Dg is much
smaller than those for the atom and ion over most of the low-temper-
ature range considered. So, from

A%
T
i=1

o

T
we have D -D ., However, at high degrees of ionization, only the

I~ A
T

ions and electrons are important, so Di = —Dg. Since DA < 0 and

T T

Dgp > O, DI must pass through zero at some point where, necessarily,
T _ _;T
DA = DE’
p=1mm and above 20000°K for the higher pressures.

We see from Fig. 17 that this occurs around 17400°K  for

The difference between the second and third approximations to the
thermal diffusion coefficients will not be shown here (this coefficient
is zero in the first approximation). As might be expected from the
studies of I {Sec 3), the rate of convergence of this coefficient was
found to be quite slow. For example, at SOOOOK and 1 atm, D?

increased by 338% from the second to the third approximation. The
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fourth approximation was also calculated for these conditions, with
the use of the approximate cross sections in (2.18), and was higher

than [D%] by 425%. The example just cited was an extreme case,

’
and at higﬁer temperatures the change from the second to the third
approximation was considerably less. For example, at 15000°K and
1 atm, with a degree of ionization of 58%, the change was -12, 2.2
and -2,2%, respectively, for the electron, ion and atom coefficients.
The third approximations to all of the multicomponent diffusion
coefficients for 5000-20000°K and 1 atm pressure are plotted in Fig.
18. Because of the very large charge-transfer cross section and the
higher masses, the ion-atom and atom-ion diffusion coefficients lie
considerably below the others. It turns out to be a very good approxi-
mation to take D., = D,_ = [D

IA Al
coefficient and is found from

]., where the latter is the binary
JA-1

1/2

2
o 1 -3 i S 2k Y/ 2.15)
ij’1 16n\ m m, =(1,1) ’
i Q..
ij
Actually, this relation follows from the expression (HCB, p. 716),
ng(mgDyg/my - Dpp) @ .16)
D12 = D12 1+ nd. .+n D _+nD
1723 2713 3712

which holds in the first approximation, when we consider the order in
electron mass of each term for DIA and DAI’ The very rapid con-
vergence might be expected from the hard-sphere nature of the average
ion-atom cross sections (Figs. 1, 8) for which the convergence of
diffusion coefficients is quite rapid. .

No similar simplifications, either .regarding the rate of convergence
or the relation between the multi and binary coefficients, were found
for the other pairs of species. It is evident from (2.16) that the
multicomponent diffusion coefficients are not symmetric when the electron

is involved. It is evident also from (2.16) that, at least in the first

approximation,
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lim D_ . = 1lim D =D

nE-+0 EI nE—>0 EA EA
and (2.17)
11m0 DEI = 11m0 DEA = DEI
nA—> nA->

In all approximations the calculations showed that it is quite accurate
for all degrees of ionization to take DEI = DEA' For example, for

p = 100 mm Hg, a maximum difference of 2% between these coefficients
occurs at 87% ionization. Therefore, DEI alone is given in the
figures and in Table YYE. The latter includes a list of the third

and D, at 1000° intervals from 5000

approximations to D,_, D I

o AE IE’
to 20000 K.

The rate of convergence of DAE and DEI (or DEA) at 1 atm is
studied in Fig. 19. The rate of convergence is by no means uniform
at different temperatures. This feature is to be expected since
different intermolecular forces are preponderant at different degrees
of ionization. One unexpected result is the reversal of direction of
convergence for QAE' Thus at low temperatures DAE increases with
higher approximations, while at about 7000°K and above the second
approximation is less than the first, and the third is between the
two. This behavior, while unusual, has already been encountered in
the thermal diffusion ratio of a Lorentzian gas with the Coulomb
potential ( see ‘I, Table 1k).

Because of the very slow rate of convergence of the approximations
to DAE and DEI near 50000K (Fig. 19), it was decided to continue
the calculations to even lower temperatures. A limit of 2500°K was
determined, mainly by the finite arithmetic of the computer. At low

electron and ion densities, we note from (2.16) that

ae), = [gr) = (og,])

This result is confirmed also by the actual calculations (cf. Fig. 19;
note that different scales are used on the abscissa). Figure 20 shows
DEI for up to the fourth approximation at pressures of 10 and 760 mm
Hg. As mentioned earlier, the average cross sections necessary for
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the fourth approximation were not availlable for the exponential
potential used for the atom~atom and lon-atom elastic collisions,
These cross sections are of minor importance when computing D at

EI
low temperatures, and so were approximated by

—Q(2,s) =(2,s-1)

= 0.97 X Q (s = 5,6)

(2.18)

6(4’4) - 6(2’2)

Note that the cross sections for J odd are not needed for collisions
of identical species, and are found from the charge-exchange cross
section in the case of the ion-atom pair. Hence only a total of six
cross sections must be approximated by (2.18).

One important feature is indicated by Fig. 13, and brought out
more strongly in Fig., 20. This is the strong dependence of the slope
of the diffusion coefficient curves on the approximation used at the
lower temperatures. Thus, at 760 mm, the first approximation to DEI
is a monatomic function of T up to about 5250°K where it reaches a
maximum and then begins to decrease. The second approximation has a
maximum at about 4900°K and then decreases somewhat more rapidly there-
after than the first. In the third approximation the maximum has moved
to a slightly lower temperature and a new relative maximum has appeared
near 35000K. This second maximum is confirmed in the fourth approxi-
mation and the first maximum has moved to still lower temperatures and
become much more pronounced. Because of the complexity of the formulas
in the third and fourth approximations, it is difficult to discover
the exact source of the maximums in these curves. They probably are
caused by the anomalous minimums in the e-A cross sections at low

temperatures,.

2.3 Comparison of Electrical Conductivity with Experiment

The electrical conductivity appears to be the only transport
coefficient of argon which has been measured under conditions in
which the state of the gas is reasonably well known. Most of these

experiments have been made in the shock tube with the magnetic
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deflection technique developed by Lin, Resler and Kantrowitz (1955).
In one set of data obtained by Pain and Smy (1961), the conductivity
was inferred from measurements of the voltages across small electrodes
at low currents. The measurements to be considered here were made at
initial shock-tube pressures of 1, 10 and 100 mm Hg. Smy and Driver
(1963), who worked with an electromagnetic shock tube, report results
at lower initial pressures, but the gas apparently does not attain
thermodynamic equilibrium at these pressures.

The experimental and theoretical conductivities are shown in
Figs. 21-23. The theoretical values were computed with the third
approximation. Also shown in Figs. 22-23 is the electrical conduc-
tivity as computed from an approximate mean-free-path relation (Lin
et al, 1955),

0.532 e° [_ M -1
. n -
e =(1,1)

O, QEI

= — ) n,
MFP (mEkT)l/z fié i

(2.19)

For the electron-ion encounters, it is necessary to use an average
cross section different from the usual one (3.12)I in order to en-
sure that oypp takes the value of Spitzer and Hiarm (1953) at full

ionization. The cross section so derived is

~(1,1) _ 0.9 e

Q In A (2.20)
£l (kT) 2

The usual shock relations were used with the Saha equation (2.10) to
determine the state of the gas behind the incident shock. Only below
about 109000K for the initial pressure of 1 mm Hg is the Debye length
d greater than the interelectron distance h, so the shielded
potential treatment of the charged-particle cross sections is strictly
not valid for most of the experimental conditions. Nevertheless the
computations were made both with and without the higher order terms

and with

b

2d 2h
A = max B-’ —_
(o} o
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In the figures it appears that the results with the higher order terms
give better agreement with the experiments. In the lower temperature
measurements of Lin et al (1955), they noted that the conductivity

was still rising at the end of the testing time, so the gas had
probably not reached equilibrium ionization, which explains why some
of these points lie considerably below the curves in Fig, 22. The
large discrepancy of some of the points of Pain and Smy (1960, 1961)
and Smy and Driver (1963) is unexplained, but might be due to the

presence of easily ionized impurities in the test gas.
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3. Discussion and Conclusions

We can now compare some of the coefficients computed here with those
obtained by other authors. In making these comparisons, we should note
that discrepancies can arise from three sources: (1) use of different
methods to compute the degree of ionization, (2) the use of different
expressions for the coefficients, and (3) different average cross sections.

Errors due to the first source are likely to be important only above
about 15000°K, where the argon atom-atom partition function begins to
deviate appreciably from the unexcited value of one. This deviation is
often approximated or even entirely neglected. The largest discrepancy
due to point (2) would be expected in the thermal conductivity, when the
calculations have been carried out with the first or second approximation.
But this error can be masked by considerably different choice of average
cross sections, even in the charged-particle interactions. Sherman (1963),
for example, instead of 4n A [c.f. (3.12)1] has used (1/2) /n (1 + Az)
with A = d/bO and d2 = kT/41rnEe2 for the 4 = s =1 cross sections
at pressures of 1 atm. In the present case, the interelectron distance h
was used instead of d at these pressures, with A = 2h/bo. Other
investigators have approximated the electron-atom cross sections in a
variety of ways. Olsen (1959) assumed a constant value, thus completely
neglecting the Ramsauer effect. Weber and Tempelmeyer (1964) evidently
obtained their average c¢ross sections from the measurements of total
cross sections vs energy by setting the average thermal energy (Z kT)
equal to the electron energy in scattering experiments. 1In effect, this
method assumes that all electron-atom collisions take place with the
average relative speed. But a comparison of Figs. 1 and 2 shows that
this method can at best be only a crude approximation to the true vari-
ation of 6(1’1) with temperature.

The electrical conductivity of argon seems to have been most exten-
sively studied. Olsen (1959) used a mean-free-path expression similar
to that given in Section 2.3 to compute (¢ at 1 atm. His values are
considerably above those obtained here (e.g. 97 vs 66 mhos/cm at 15000°K)
or elsewhere. Weber and Tempelmeyer (1964) used two different electron-

atom cross sections with the mean-free-path expression (2.19) to obtain
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values of 0 at 1 atm close to or somewhat above the results of Section
2.2 (e.g. 67 and 87 mhos/cm at 15000°K) . Bo¥njakovic and Springe (1962)
and Pindrch (1962) aisc report electrical conductivities higher than here
(75 and 83 mhos/cm respectively at 15000°K and 1 atm). It should be
noted, however, that the inclusion of higher order terms in the charged
cross sections increases the electrical conductivity at 100 mm and 150000K
by about 20%. Applying this correction to the value at 1 atm would give
a value of 79 mhos/cm, well in the middle of other results.

Cann (1961) and Sherman (1963) have computed the argon viscosity at
1 atm with essentially the first approximation. The values computed by
Sherman are considerably higher than those in Fig. 9, probably because
of the smallier (constant) ion-atom cross section which he used (6(1’1) =
78 82 vs 96 Xz at 15000°K used here). Cann's viscosities are in better
agreement but still somewhat high (4.8 X 1074 vs 4 X 10_4 poise at 16000°K) .

The thermal conductivity at 1 atm has been computed in the second
approximation by Sherman (1963). Inexplicably, his values at 15000°K
(1.03 X 10_5 erg/cm—sec—oK) are considerably above the second approxi-
mation in Fig. 13 (0.547 X 105) and not too much below the results for
the third approximation (1.22 X 105). Ahtye (1964) also reports a thermal
conductivity around 105 erg/sec—cm—oK for argon at 150000K and 10_1 atm,
but he evidently did not allow for the contribution of thermal diffusion,
which would reduce this value by about 40%. Bosnjakovic and Springe (1962)
have also reported on calculations with approximate relations due to Maecker
and to Schirmer. At 20000°K and 1 atm the former method gives about
3.5 % 105 while the latter gives 2.5 X 105, in units of erg/sec—cm—oK.
Clearly, the latter result is in better agreement with the third approxi-
mation as obtained here (2.33 x 10° at 20000°K).

Both Sherman (1963) and Ahtye (1964) have carried out calculations
of the diffusion coefficients, although Ahtye only reports values for the
thermal diffusion coefficients. A detailed comparison of these coeffi-
cients will not be attempted here. It is worthwhile noting the interesting
numerical technique used by Sherman to compute the diffusion coefficients
as well as the thermal conductivity. Instead of solving the linear equa-
tions resulting from the Sonine polynomial expansion and then writing the

transport coefficients as the ratio of two determinants (Hirschfelder
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et al, 1964; also I), he inverted the matrix of coefficients of the
linear equations, and then obtained the transport properties by a.simple
multiplication of the matrix inverse with a column matrix. This tech-
nique results in a large saving of computer time over the method used
here whereby one determinant was evaluated for each coefficient (plus

one evaluation of the denominator determinant). However, in computation
of the third and fourth approximations at low degrees of ionization, the
very large disparity in size of some of the matrix elements causes ex-
ponent overflow or underflow in the computer when we attempt matrix
inversion with the standard programs. It is possible to incorporate
features in an inversion program to take care of the possibility of over-
or underflow, but it was found easier to do this for the determinant
evaluation program. Hence, the expressions involving determinants were
used for these computations. For more complicated mixtures, the resultant
saving in computer time would make it profitable to investigate further
the matrix inversion technique.

We can now turn to a further examination of the calculations pre-
sented here, especially with regard to the aims described in the intro-
duction. From thé results for the‘thermal conductivity and for the
diffusion coefficients, we can conclude that one should be very careful
about assuming that a certain approximation will give adequate transport
coefficients when a considerably different force law is operative in the
mixture or when a very light species is present. Thus with the Coulomb
potential in the fully ionized plasma we must use at least the third
approximation to compute the thermal conductivity. The slow convergence
carries over into the partially ionized gas, so that there is better
than 10% difference between the second and third approximations to these
coefficients at QOOOOK and 1 atm with a degree of ionization less than
1%! Further, we saw that even the fourth approximation to the electron-
ion diffusion coefficient did not appear adequate at very low degrees of
ionization. This behavior is doubtless caused by the very different
behavior of the dominant electron-atom cross section at lower tempera-
tures. It may be that the expansion in Sonine polynomials is ill-suited

for gases with such cross-section behavior.
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At the higher degrees of ionization, the inclusion of the next higher
order tefms in the charged-particle cross sections was found to increase
all coefficients by appreciable amounts. In equilibrium argon above about
400 mm Hg this analysis is no longer valid, since the Debye length becomes
less than the interelectron distance. Whén this happens, there are only
a few electrons in a Debye sphere, and the concept of shielding by a
"cloud" of electrons is lost. However, in the comparison of calculated
and experimental electrical conductivities, some evidence was found that
the higher order terms for -the denser plasmas should be about the same
size as those obtained ‘with the shielded potential. The experimental
measurements were also compared with calculations made with an approxi-
mate mean-free-path expression. Values so computed agreed fairly well
with those from the third approximation (as computed without higher
order terms in charged cross section); well enough, so that, in view
of the large amount of scatter in experimental points, neither could be
said to better "'predict' the electrical conductivity. However, since
the meah—free-path electrical conductivity reduces to a constant times
the first appfoximation to the binary diffusion coefficient at low
temperatures, the slow convergence of the latter (see Figs. 19-20) shows
that (he approximate formula will be seriously in error below about
6000°K.

It is worth reiterating here one conclusion reached in I: that, in
spite of the complexity of the expressions, it is possible to routinely
carry out computations of ther transport properties to the third and even
the fourth approximation. The chief stumbling block to such calculations
is the lack of knowledge of the average cross sections for all the inter-
actions taking place in the gas. Although we were limited to the third
approximation to the thermal conductivity because of the lack of compu-
tation of certain average cross sections for the exponential potential,
the major need seems to be for further experimental measurements of
elastic interactions. Thus, although there have been many measurements
of the charge-transfer cross section in argon around 10 eV and above,
only one measurement has been discovered in the most important energy

range (for gas kinetics at least) around 1 eV. The only absolute
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APPENDIX ~~- GAS-KINETIC CROSS SECTIONS IN TERMS OF PHASE SHIFTS

The method of derivation ef Egs. (@ Jsa-d) for the gas~kinetic
cross sections in terms of the phase shifts ng will be briefly
indicated in this appendix. The differential cross section is given
in terms of the phase shifts by
in 2

K; 20 + 1) e U sin ny Pg(z) 1.1)

o(x) = Z__

=
ol

with K2 = H g /ﬁ z = cos X , and Pﬂ(Z) denoting Legendre poly-

nomials. The object is to evaluate the integrals

Qgﬁ; nk/xc(xlg)(l - cosz X) sin x dx (2.18)I
0

using this form of the differential cross section. This evaluation is

not difficult but is tedious, especially when £ = 3 or 4. The forms

of the result (2.4) for g = 1,2 are given in HCE*and are credited

there to Kramers, although he apparently did not publish the deriva-

tions. To illustrate the method of derivation, the case for fJ =1

will be worked out here. Rewrite (2.18)Ias

Q1) = TOT _ D @.2)

7 [o0]
Q = Zﬂf o(X) sin X dx = Z (24 + 1) sin? T]Z
0 £=0

ml*:

(A.3)
is the total cross section. Then,

3 o0 in ) —in
Q(l) = Eg }j (20 + 1) e £ sin 1, Eﬁ (2m+ 1) e ™ sin .,
K ; -

1
oh/;z Pz(z) Pm(z) dz (A.4)

* Hirschfelder, Curtiss and Bird (1964)
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measurements of the differential cross sections for electron-atom
encounters at low energies date from more than thirty years ago (Ramsauer
and Kollath, 1932), and have apparently never been quantitatively dupli-
cated. The lack of more recent accurate measurements is more evident when
when we realize that both Kivel (1959) and O'Malley (1963), whose values

Q(z)(g) at very low

of the phase shifts nz were used to determine
energies, base part or all of their analysis on the Ramsauer-Kollath

and earlier measurements.
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Using the recursion relation

J J+1 :
z PE(Z) = ﬂ-+_l Pg_l(z) + m—l Pﬂ+1(Z) (A.5)

and the orthogonality relation

1
2 °
/1 PE(Z) Pm(z) dz = ﬂ_+—1 Bzm (A.6)
we see that Eq. (B.2) becomes
(1 4 . .2
Q =-;g ZE: E(zﬂ + 1) sin® n, - 2(f + 1) cos My = Mgep)
£=0

» sin M1 sin nzj (A.7)

Now expand the expression in brackets and regroup and recombine terms

to get

1) 4n
Q = =
K:2

[>~]8

EB + 1) sin2 (nz - n2+1) + £ sin2 uy

£=0

i

-+ 1D sin2 nz+g

But the last two terms cancel so the final form is

Q) _ 4n 2
Q == 2: ({ + 1) sin My - n2+1) (B.8)
L s

The evaluation of the other integrals for / = 2,3,4 follows in
much the same way. For the cases £ = 3,4 the recursion relation
(CA.5) must be used twice. The results are given in Egs. (2.ka-d). 1In
the limit KZ'*‘O, sinz'qo'* const X 2 = Azaiwz (say), and the other

phases vanish as R4 or a higher power of . In this limit, then,

49 -



2
41{Aa0

TOT

O

wln
F:»)

TOT

O

252 _TOT
315

50

A.9)




BIBLIOGRAPHY

Ahtye, W, F. (1964), "A Critical Evaluation of Methods for Calculating
Transport Coefficients of a Partially Ionized Gas," in Proceedings of
the 1964 Heat Transfer and Fluid Mechanics Institute, Stanford Uni-
versity Press.

Amdur, I. and Mason, E. A, (1958), "Properties of Gases at Very High
Temperatures,’ Phys. Fluids, 1, 370.

Biondi, M. A. and Chanin, Lm M. (1952), "Temperature Dependence of Ion
Mobilities in He, Ne and A," Phys. Rev., 106, 473.

Boghjakovic, F. and Springe, W. (1962), "Electrical and Thermal Conduc-
tivity of Argon Plasma," in Progress in International Research on
Thermodynamic and Transport Properties, ASME, N.Y,

Brokaw, R. S. (1964), "Approximate Formulas for Viscosity and Thermal
Conductivity of Gas Mixtures,' NASA TN D-2502.

Cann, G. L. (1961), "Energy Transfer Processes in a Partially Ionized
Gas," Hypersonic Research Project Memo. No. 61, Guggenheim Aeronautical
Laboratory, Cal. Inst. Technology.

Chapman, S. and Cowling, T. G. (1958), "The Mathematical Theory of Non-
Uniform Gases," Cambridge University Press.

Cloney, R. D., Mason, E. A. and Vanderslice, J. T. (1962), "Binding
Energy of AE from Ion Scattering Data,” J. Chem. Phys., 36, 1103.

Cramer, W, H, (1959), "Elastic and Inelastic Scattering of Low Velocity
Ions: Net in A, At in Ne and A* in A,” J. Chem. Phys., 30, 641.

Dalgarno, A. (1958), "The Mobilities of Ions in Their Parent Gases,"
Phil. Trans. Roy. Soc. London, A250, 426.

de Voto, R. S. (1964), "Transport Properties of Partially Ionized Mona-
tomic Gases, ' SUDAER No. 207, Dept. of Aeronautics and Astronautics,
Stanford University.

Drellishak, K. S., Knopp, C. F. and Cambel, A. B, (1963), "Partition
Functions and Thermodynamic Properties of Argon Plasma, Phys. Fluids,
6, 1280.

Fay, J. A. (1962), "Hypersonic Heat Transfer in the Air Laminar Boundary
Layer,”" AMP 71, Avco Everett Research Lab., Everett, Mass.

Firsov, O. B, (1951), Zh. Eksperim. i Teor. Fiz., 21, 1001.

Gilbody, H. B. and Hasted, J. B. (1957), "Anomalies in the Adiabatic
Interpretation of Charge Transfer Collisions," Proc. Roy. Soc. London,
A238, 334,

51



Hirschfelder, J. 0., Curtiss, C. F. and Bird, R. B. (1964), "Molecular
Theory of Gases and Liquids," John Wiley & Sons, New York.

Kivel, B. (1959), "Elastic Scattering of Low Energy Electrons by Argon,"
Phys. Rev., 116, 926; also Research Note 129, AVCO Everett Research
Lab., Everett, Mass.

Kushnir, R. M., Palyukh, B. M. and Sena, L. A. (1959), "Investigations
of Resonance Charge Exchange in Monatomic Gases and Metal Vapors,'
Bull. Acad, Sci. USSR, Phys. Ser., 23, 995.

Liboff, R, L. (1959), "Transport Coefficients Using the Shielded Coulomb
Potential," Phys. Fluids, 2, 40.

Lin, S. C., Resler, E. L. and Kantrowitz, A. (1955), "Electrical Con-
duct1v1ty of Highly Ionized Argon Produced by Shock Waves," J. Appl.
Phys., 26, 95.

Lindholm, E. (1960), "Ionization and Dossociation of H_ , N, and CO in
Charge Exchange Collisions with Positive Ions," Arkiv Fysik, 18, 219.

Mason, E. A., Vanderslice, J. T. and Yos, J. M. (1959), "Transport
Properties of High Temperature Multicomponent Gas Mixtures," Phys.
Fluids, 2, 688.

Monchick, L. (1959), "Collision Integrals for the Exponential Repulsive
Potential, ' Phys. Fluids, 2, 695.

O'Malley, T. F. (1963), "Extrapolation of Electron-Rare Gas Atom Cross
Sections to Zero Energy," Phys. Rev., 130, 1020.

Olsen, H. N. (1959), "Thermal and Electrical Properties of an Argon
Plasma,  Phys. Fluids, 2, 614.

Pain, H. J. and Smy, P. R. (1960), "The Electrical Conductivity of Shock
Heated Argon, J. Fluid Mech., 9, 390.

Pain, H., J. and Smy, P. R. (1961), "Experiments on Power Generation from
a Moving Plasma, J. Fluid Mech., 10, 51.

Pindroh, A. L. (1962), "Transport and Electrical Properties of the Inert
Gases,'' D2-22422, Boeing Company. Argon Properties Quoted in D2-11238.

Ramsauer, C. and Kollath, R. (1932), "Die Winkelverteilung bei der Streuung
langsamer Electronen an Gasmolekillen III, Fortsetzung und Schluss,"
Ann. Physik, 12, 837.

Sherman, M. P. (1963), "Calculation of Transport Properties - Mixtures of

Helium and Partly-Ionized Argon," Princeton University, Aero. Engineer-
ing Laboratory Report No. 673,

52




Smy, P.R. and Driver, H.S. (1963), "Electrical Conductivity of Low
Pressure Shock Ionized Argon," J. Fluid Mech., 17, 182,

Spitzer, L. and Hdrm, R. (1953), "Transport Phenomena in a Completely
Ionized Gas," Phys. Rev., 89, 977.

Weber, R. E. and Tempelmeyer, K. E. (1964), "Calculation of the D-C
Electrical Conductivity of Equilibrium Nitrogen and Argon Plasma
with and without Alkali Metal Seed," Arnold Engineering Development
Center, Report No. AEDC-TDR-64-119.

Westin, S. (1946), "Investigations on the Elastic Scattering of Slow
Electron in Helium, Neon, and Argon," Det Kgl. Norske Videnskabers

Selskabs Skrifter, Nr. 2, F, Bruns Bokhandel, Trondheim.

Ziegler, B. (1953), "Der Wirkungsquerschnitt seher langsamer Ionen,"
Z, Physik, 136, 108,

53



